

Life Cycle Assessment Analysis Report

LCA Report for Products:

-Washed Aggregate Stone Powder

-Aggregate No:1

-Aggregate No:2

Owner of the Report Danış Madencilik Harfiyat İnşaat San. Tic. A.Ş.

> **LCA Consultant** Furkan Yıldız, BSc.

> > **Date** 11.06.2024

CONTENTS

1.	EXEC	CUTIVE SUMMARY	4
2.	SUM	MARY	5
3.	GEN	ERAL ASPECTS	6
3	.1.	General Information About the Company and The Product	6
-	.2.	Statement That the Study Has Been Conducted According to The Requirement	
S		rd	
4.	ABO	UT THE LCA	7
5.		OF THE STUDY	
6.	SCO	PE OF THE STUDY	
6	.1.	Product Description and Characterization	
6	.2.	Declared Units	
6	.3.	Composition of the Products	11
6	.4.	Product Area of Application	11
6	.5.	System Boundary	11
6	.5.1	System Boundary	
6	.6.	Electricity Power Mix	13
6	.7.	CO ₂ Certificates	13
7.	LIFE	CYCLE INVENTORY ANALYSIS	14
7	.1.	Collecting Data	14
7	.2.	Calculation Methods	14
7	.3.	Selecting Data / Background Data	16
7	.4.	Data / Background Data Quality Requirements	16
7	.5.	Allocations	16
8.	LIFE	CYCLE IMPACT ASSESSMENT	
8	.1.	Indicators for the Life Cycle Inventory Analysis as Per EN 15804	
8	.2.	LCA Result	
9.	LIFE	CYCLE INTERPRETATION & CONCLUSION	27
9	.1.	Overall Summary	27
9	.2.	Breakdown of LCA Results	27
10.	А	DDITIONAL INFORMATION	
1	0.1.	Documentation for Calculating the Reference Service Life (RSL)	
1	0.2.	Disclaimer	
11.	R	EFERENCES	

TABLES

Table 1. List of Acronyms for indicators	3
Table 2. Materials Used in the Production of Washed Aggregate Stone Powder, Aggregate No:1 a	ind
Aggregate No:2.	11
Table 3. Mandatory Indicators Used for the LCA	14
Table 4. Additional Indicators Used for the LCA	15
Table 5. Description of System Boundary	17
Table 6. Results of LCA analysis per declared/functional unit- Washed Aggregate Stone Powder	18
Table 7. Resource and energy use per declared/functional product- Washed Aggregate Stone Pov	wder
	19
Table 8. Waste & Output flows per declared/functional unit- Washed Aggregate Stone Powder	20
Table 9. Results of LCA analysis per declared/functional unit- Aggregate No: 1	21
Table 10. Resource and energy use per declared/functional product- Aggregate No: 1	22
Table 11. Waste & Output flows per declared/functional unit- Aggregate No: 1	23
Table 12. Results of LCA analysis per declared/functional unit- Aggregate No: 2	24
Table 13. Resource and energy use per declared/functional product- Aggregate No: 2	25
Table 14. Waste & Output flows per declared/functional unit- Aggregate No: 2	26
Table 15. Environmental Impact Distribution by LCA Stages-Washed Aggregate Stone Powder	27
Table 16. Environmental Impact Distribution by LCA Stages-Aggregate No:1	29
Table 17. Environmental Impact Distribution by LCA Stages-Aggregate No:2	30

FIGURES

Figure 1. LCA Stages	7
Figure 2. The four phases of LCA	8
Figure 3. Production Flow Diagram	. 10
Figure 4. System boundary of the LCA Study Conducted on Danış Madencilik Washed Aggregate	
Stone Powder, Aggregate No:1 and Aggregate No:2	. 12
Figure 5. GWP Distribution of LCA Stages-Washed Aggregate Stone Powder	. 28
Figure 6. GWP Distribution of LCA Stages-Aggregate No:1	. 30
Figure 7. GWP Distribution of LCA Stages-Aggregate No:2	. 31

List of Acronyms

Table 1. List of Acronyms for indicators

ADPE	Abiotic Depletion - elements
ADPF	Abiotic Depletion – fossil resources
AP	Acidification Terrestrial and Freshwater
CRU	Components for reuse
CTUe	Comparative Toxic Unit for Aquatic Ecotoxicity Impacts
CTUh	Comparative Toxic Unit for Human Toxicity Impacts
EE (Electrical):	Exported energy electrical
EE (Thermal):	Exported energy thermal
EF	Environmental Footprint
EPA	Environmental Protection Agency
EP-freshwater	Eutrophication freshwater
EP-terrestrial	Eutrophication terrestrial
EP-marine	Eutrophication marine
Eq.	Equivalent
ETP-FW	Ecotoxicity Freshwater
FW	Use of net fresh water
GWP	Global Warming Potential
GWP-total	Global Warming Potential – Total
GWP-fossil	Global Warming Potential – Fossil
GWP-biogenic	Global Warming Potential – Biogenic
GWP-LULUC	Global Warming Potential – Land Use and Transformation
HTP-NC	Non-cancer human health effects
HTP-C	Cancer human health effects
HWD	Hazardous waste disposed
IR	Ionising Radiation
IREC	International Renewable Energy Certificate
ISO	International Standard Organization
LCA	Life Cycle Assessment
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact Assessment
MER	Materials for energy recovery
MFR	Material for recycling
NHWD	Non-hazardous waste disposed
NRSF	Use of non-renewable secondary fuels
ODP	Ozone Layer Depletion
OEF	Organizational Environmental Footprint
PERE	Use of renewable primary energy excluding used as raw materials
PERM	Use of renewable primary energy resources used as raw materials
PERT	Total use of renewable primary energy resources
PENRE	Use of non-renewable primary energy excluding used as raw materials
PENRM	Use of non-renewable primary energy resources used as raw materials
PENRT	Total use of non-renewable primary energy re-sources
PM	Particulate Matter
РОСР	Photochemical Oxidation
RER	Region of Europe
ROW	Rest of the World
RSF	Use of renewable secondary fuels
RWD	Radioactive waste disposed
SM	Use of secondary material
SQP	Soil Quality
WDP	Water Scarcity

1.EXECUTIVE SUMMARY

Goal and Scope:

This Life Cycle Assessment (LCA) study evaluates the environmental impacts of 1 tonne of Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2 from cradle to gate before the delivery to end-users, manufactured by Danış Madencilik in Sarıyer/İstanbul. The results can be used for business-to-business communications.

Database:

SimaPro 9.5 and Ecoinvent 3.9.1 are used in the assessment.

Methodology Used:

• ISO14040/44 & EN 15804+A2

The results of the LCA study performed for Washed Aggregate Stone Powder showed that manufacturing stage is the dominant life cycle stage in all environmental impacts categories.

The results of the LCA study performed for Aggregate No:1 showed that raw material stage is the dominant life cycle stage in all environmental impacts categories.

The results of the LCA study performed for Aggregate No:2 showed that manufacturing stage is the dominant life cycle stage in all environmental impacts categories.

Carbon Footprint of 1 tonne of products manufactured in İstanbul:

- > 13,2 kg of CO₂ equivalent for Washed Aggregate Stone Powder manufactured in İstanbul.
- ▶ 8,5 kg of CO₂ equivalent for Aggregate No:1 manufactured in İstanbul.
- > 9,4 kg of CO₂ equivalent for Aggregate No:2 manufactured in İstanbul.

Most Significant Emission Sources:

Manufacturing Stage with about 65% of all environmental impacts for Washed Aggregate Stone Powder.

Raw Material Stage with about 54% of all environmental impacts for Aggregate No:1.

Manufacturing Stage with about 51% of all environmental impacts for Aggregate No:2.

2.SUMMARY

This study aims to evaluate the environmental impact of Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2 by Danış Madencilik. This report focuses on the application of Life Cycle Assessment (LCA) methodology to calculate the potential environmental impacts of Danış Madencilik products within the defined system boundary.

This LCA was conducted using data collated in 2023 from Danış Madencilik's production plant. The LCA model was developed and the results of the LCA were presented in this report.

LCA was performed in agreement with the requirements of the ISO 14040/44 standard. Environmental impacts are calculated with four different impact assessment methodology. The inventory for the LCA study is based on the 2023 production figures for Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2 manufactured by Danış Madencilik in their İstanbul Plant in Turkey. This LCA was modelled using SimaPro 9.5 LCA software package using the Ecoinvent 3.9.1 database for background data.

The LCA study includes the stages from the upstream supply chain for raw materials acquisition to transport to factory gate and manufacturing stages before the delivery to the client. The term 'raw materials' includes raw materials extraction. Transport is relevant for delivering raw materials to the plant as well as internal transport for handling of materials within the operation.

When the result of the LCA study was analysed, raw materials for Aggregate No:1, manufacturing for Washed Aggregate Stone Powder and Aggregate No:2 appeared to be the dominant life cycle stage for all environmental impact categories assessed.

The LCA part of this work is conducted Metsims Sustainability Consulting. Metsims is a specialised sustainability consultancy based in the UK and Turkey, focusing on life cycle assessment, product sustainability, carbon management and sustainable finance.

3.GENERAL ASPECTS

3.1. General Information About the Company and The Product

Danış Family, which started its commercial activities in 1980, established Danış Beton in Istanbul/Ataşehir in 1999 with the mobilization of the construction industry. While continuing to operate the concrete facility in 2012, it started to produce aggregate in partnership with USC Yapı Madencilik in line with the demand of the sector. Danış Family purchased the entire operating license in 2015, strengthened its infrastructure and took its place among the important companies of the sector.

Mission, Purpose & Strategy

Danış Madencilik's mission is to produce in a way that provides high added value for the country by closely following and applying technological developments. While doing all these, its top priority is to act in accordance with the law at every stage of its business process, to always be aware of responsibilities towards the environment and to care about people.

Danış Madencilik's aim is to do business at international standards in every field and to be a constantly growing organization that is recognized by international circles.

Danış Madencilik's strategy is to ensure operational excellence by combining the entire process from the first stage of production to the final product with state-of-the-art equipment, to obtain the highest possible value in the short, medium and long term by using its resources in the best way, to gain transportation and cost advantage by using its proximity to the city center and main transportation lines.

3.2. Statement That the Study Has Been Conducted According to The Requirements of This Standard

This study is conducted according to the guidelines of ISO 14040 and ISO 14044 and the requirements given in the Product Category Rules (PCR) document for Construction EN 15804:2012+ A2:2019/AC:2021 Sustainability of Construction Works.

The inventory for the LCA study is based on the 2023 production figures of Danış Madencilik in their İstanbul Plant in Türkiye. This LCA was modelled with SimaPro 9.5 LCA package using the the Ecoinvent 3.9.1 database for secondary data.

4. ABOUT THE LCA

Life Cycle Assessment (LCA) is a method of systematically mapping a product's environmental impact. LCA deals with environmental aspects, i.e. environmental impacts, and its potential impact on human health, ecosystems and natural resources during the product life cycle from raw materials extraction and production to use, recycling and final management. The use of energy and materials is mapped at all levels, as well as emissions to the environment and nature, and management of residual materials and possible energy recovery. Through increased understanding of the environmental impacts of the environmental aspects, measures can be taken where they make the most of their use. LCA according to standardized methods also facilitates comparisons with other products, which may be useful in market communications and for developing environmental strategies for developing products, processes and business models.

Figure 1. LCA Stages

In 1997, the European Committee for Standardization published their first set of international guidelines for the performance of LCA. This ISO 14040 standard series has become widely accepted amongst the practitioners of LCA and is continuously being developed along with progressions within the field of LCA. The guidelines for LCA are described in two documents; ISO 14040, that contains the main principles and structure for preforming an LCA, and ISO 14044, which includes detailed requirements and recommendations. Furthermore, information about the format for data-documentation, as well as technical reports with guidelines for the different stages of an LCA are available in this standard series.

LCA is performed according to the ISO 14040-44 series standards.

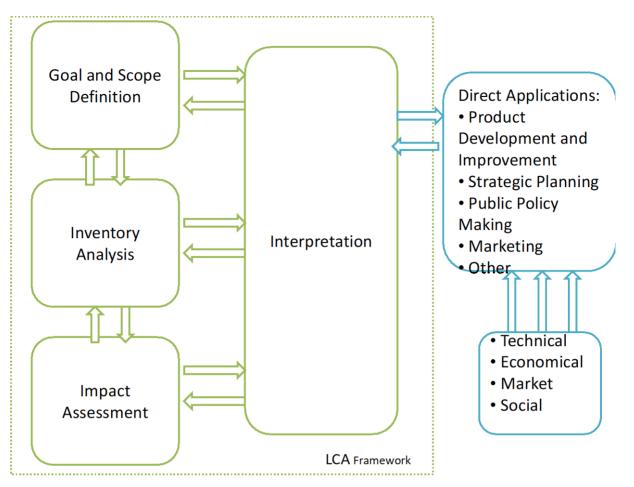


Figure 2. The four phases of LCA

1. The scope, including system boundary and level of detail, of an LCA depends on the subject and the intended use of the study. The depth and the breadth of LCA can differ considerably depending on the goal of a particular LCA.

2. The life cycle inventory analysis phase (LCI phase) is the second phase of LCA. It is an inventory of input per output data with regard to the system being studied. It involves the collection of the data necessary to meet the goals of the defined study.

3. The life cycle impact assessment phase (LCIA) is the third phase of the LCA. The purpose of LCIA is to provide additional information to help assess a product system's LCI results so as to better understand their environmental significance.

4. Life cycle interpretation is the final phase of the LCA procedure, in which the results of an LCI or an LCIA, or both, are summarized and discussed as a basis for conclusions, recommendations and decision-making in accordance with the goal and scope definition.

LCA addresses the environmental aspects and potential environmental impacts) (e.g. use of resources and environmental consequences of releases) throughout a product's life cycle from raw material acquisition through production, use, end-of-life treatment, recycling and final disposal (i.e. cradle-tograve).

5. AIM OF THE STUDY

This LCA study evaluates the environmental impacts of 1 tonne of Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2 from cradle to factory gate before delivery. The background data and the results will be used for business-to-business communications (B2B).

The result of this LCA study will provide a better understanding of the environmental impacts resulting from the manufacturing of the Danış Madencilik. Therefore, the company may start to work for reducing their carbon footprint and the other environmental impacts.

6.SCOPE OF THE STUDY

6.1. Product Description and Characterization

Washed Aggregate Stone Powder

The stone which is obtained by drilling and blasting in the quarry, sized and classified in crushing and screening facilities. It is called finest sized aggregate. It is obtained by washing dry stone powder.

Aggregate No:1

The stone which is obtained by drilling and blasting in the quarry, sized and classified in crushing and screening facilities. It is 4-11.2 mm in size

Aggregate No:2

The stone which is obtained by drilling and blasting in the quarry, sized and classified in crushing and screening facilities. It is 4-22.4 mm in size

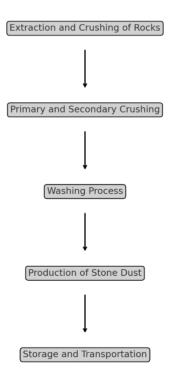


Figure 3. Production Flow Diagram

6.2. Declared Unit

The declared unit represents the quantified performance of a product system for use as a reference unit for the LCA study. The declared unit is used instead of a functional unit when the precise function of the product is not stated or known, or when the LCA does not cover a full life cycle.

The declared units studied in this LCA report are:

- 1 tonne of Washed Aggregate Stone Powder,
- 1 tonne of Aggregate No:1
- 1 tonne of Aggregate No:2.

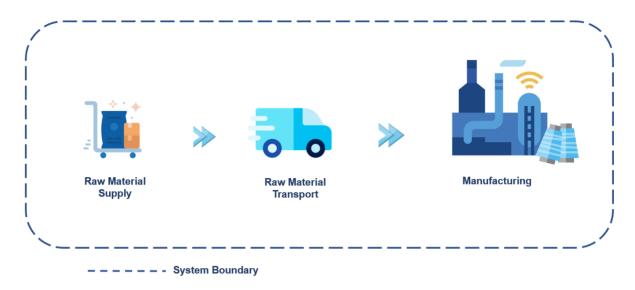
6.3. Composition of the Products

Products produced from single raw material gravel. Raw materials compositions are given below tables per each product.

 Table 2. Materials Used in the Production of Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2.

Product components	Weight, kg	Post-consumer recycled material, weight-%	Biogenic material, weight-% and kg C/kg
Gravel	1000	0%	0%

6.4. Product Area of Application


Washed Aggregate Stone Powder, Aggregate No: 1 (4-11.2 mm), and Aggregate No: 2 (4-22.4 mm) are quarry products used in construction. Stone Powder is used in concrete, asphalt, fill, landscaping, and manufacturing. Aggregate No. 1 is for concrete, asphalt, ballast, drainage, and fill. Aggregate No. 2 is for large concrete projects, high-performance asphalt, ballast, large drainage, and foundations. These materials ensure durable, long-lasting structures.

6.5. System Boundary

According to the PCR of Construction Products and Construction Services, A1 - A3 product stages ('Raw material supply', 'Transport' and 'Manufacturing') shall be considered in the LCA studies. This rule is applied throughout.

The review framework comprises the following details:

- Raw materials acquisition and transport,
- Production and storage operations,
- Energy and water consumption, waste management,

The system boundary of Danış Madencilik products are given below.

Figure 4. System boundary of the LCA Study Conducted on Danış Madencilik Washed Aggregate Stone Powder, Aggregate No:1 and Aggregate No:2

6.5.1 System Boundary

A1: Raw Material Supply

The main raw material for Danış Madencilik's investigated product is gravel. The company acquires gravel from the quarry which is in the same area where the final production process takes place. The stone is obtained by drilling and blasting in the quarry.

A2: Raw Material Transport

Transport of raw materials to production site is taken as the weight average values for transport from raw materials supplier in 2023. Quarry is in the same place with the production line. Raw materials are transported via trucks.

A3: Manufacturing

Large rock pieces are extracted from the quarry and brought to the crushing plant. Jaw crushers are used to break down the large rocks into smaller pieces. After the initial crushing, the stones are directed to a secondary crusher. In these crushers, Aggregate No:1 (5-12 mm) and Aggregate No:2 (12-22 mm) is produced. The aggregate is washed with powerful water jets in the washing plant to remove dust and dirt. This process ensures that both Aggregate No:1 and No:2 is clean and suitable for construction. Fine material produced during crushing and screening is washed to obtain washed stone dust. Washed stone dust is used as an additive in concrete production and other construction projects. The cleaned and sorted aggregates are transported to storage areas. These materials, now ready for

use, are shipped to construction sites. These processes ensure that raw rock extracted from quarries is processed for use in the construction industry.

6.6. Electricity Power Mix

Local data from the Ecoinvent was used for the electricity power mix. (Electricity, medium voltage {TR}| market for | Cut-off, S.)

Electricity for the manufacture is supplied from the Turkish grid. According to Ecoinvent 3.9.1 Database, the carbon impact of Turkish country electricity mix is 0.588 kg CO₂ eq./kWh.

6.7. CO₂ Certificates

Danış Madencilik does not currently have CO₂ certification.

7.LIFE CYCLE INVENTORY ANALYSIS

7.1. Collecting Data

Throughout this project ISO 14040 and ISO 14044 guidelines are followed. The data used in this study were primary and secondary. Primary data are those collected directly from manufacturer/producer relevant to the life cycle stages modelled. If there is no primary data available, then data from the latest Ecoinvent database (Version: 3.9.1) available for SimaPro are used as secondary data.

Apart from environmental impacts from upstream supply chain of raw materials production, all production data collected from Danış Madencilik production lines. Raw materials production data were taken from the Ecoinvent database.

Transport data were taken from the Ecoinvent, but the tonnages hauled were all provided by Danış Madencilik. The source and amount of every raw material used in production were identified and locations for transport with their means are obtained from the company. When more than one source and/or transport method was utilised, allocations were based on weighted averages.

Production-relevant data were all primary data collected from Danış Madencilik, Turkey, İstanbul Plant with the reference year to 2023.

7.2. Calculation Methods

After collecting all relevant data for each of the life cycle stages, the modelling was conducted using SimaPro life cycle assessment software. These impact categories and their associated methods are retrieved from EN 15804 A2 document. Methods are present in SimaPro within EF Method (adapted) v1.0.

Impact Category	Indicator	Unit	Method
Climate change –	Global Warming Potential	kg CO₂ eq.	Baseline model of 100 years of the
total ^a	total (GWP-total)		IPCC based on IPCC 2013
Climate change -	Global Warming Potential	kg CO₂ eq.	Baseline model of 100 years of the
fossil	fossil fuels (GWP-fossil)		IPCC based on IPCC 2013
Climate change -	Global Warming Potential	kg CO₂ eq.	Baseline model of 100 years of the
biogenic	biogenic (GWP-biogenic)		IPCC based on IPCC 2013
Climate change -	Global Warming Potential	kg CO₂ eq.	Baseline model of 100 years of the
land use and land	land use and land use change		IPCC based on IPCC 2013
use change ^b	(GWP-luluc)		
Ozone Depletion	Depletion potential of the	kg CFC 11 eq.	Steady-state ODPs, WMO 2014
	stratospheric ozone layer		
	(ODP)		

Acidification	Acidification potential,	mol H+ eq.	Accumulated Exceedance, Seppälä
	Accumulated Exceedance		et
	(AP)		al. 2006, Posch et al., 2008
Eutrophication	Eutrophication potential,	kg N eq.	EUTREND model, Struijs et al.,
aquatic marine	fraction of nutrients reaching		2009b, as implemented in ReCiPe
	marine end compartment		
	(EP-marine)		
Eutrophication	Eutrophication potential,	mol N eq.	Accumulated Exceedance, Seppälä
terrestrial	Accumulated Exceedance		et
	(EP-terrestrial)		al. 2006, Posch et al., 2008
Photochemical	Formation potential of	kg NMVOC	LOTOS-EUROS, Van Zelm et al.,
ozone formation	tropospheric	eq.	2008,
	ozone (POCP)		as applied in ReCiPe
*Depletion of	Abiotic depletion potential	kg Sb eq.	CML 2002, Guinée et al., 2002, and
abiotic resources	for non-fossil resources (ADP		van
minerals and	minerals & metals)		Oers et al. 2002
metals℃			
*Depletion of	Abiotic depletion for fossil	MJ, net	CML 2002, Guinée et al., 2002, and
abiotic resources	resources	calorific value	van
fossil fuels •	potential (ADP-fossil)		Oers et al. 2002
*Water use	Water (user) deprivation	m³world eq.	Available WAter REmaining
	potential,	deprived	(AWARE)
	deprivation-weighted water		Boulay et al., 2018
	consumption (WDP)		
The total global was	arming potential (GWP-Total) i	s the sum of:	
• GW	P-fossil		
• GW	P-biogenic		

GWP-luluc

^b It is permitted to omit GWP-luluc as separate information if its contribution is < 5% of GWP-Total over the declared modules excluding module D.

The abiotic depletion potential is calculated and declared in two different indicators:

- ADP- minerals & metals include all non-renewable, abiotic material resources (i.e., excepting fossil resources).

ADP-fossil includes all fossil resources and includes uranium.

ultimate reserve model of the ADP-minerals & metals model

Table 4. Additional Indicators Used for the LCA

Impact Category		Indicator	Unit
Particulate Matter emissions		Potential incidence of disease	Disease incidence
		due to PM emissions (PM)	
**Ionizing radiation, human health		Potential Human exposure	kBq U235 eq.
		efficiency relative to U235	
		(IRP)	
*Eco-toxicity (freshwater) P	otentia	Potential Comparative Toxic	СТИе
Comparative		Unit for ecosystems (ETP-fw)	
*Human toxicity, cancer effects		Potential Comparative Toxic	CTUh
		Unit for humans (HTP-c)	

MELDÍN

	Potential Comparative Toxic Unit for humans (HTP-nc)	CTUh
1 7 1 7	Potential soil quality index (SQP)	dimensionless

7.3. Selecting Data / Background Data

Primary data used in this study were taken from Danış Madencilik's production figures based on the year of 2023. Use of raw materials, electricity, water use, and waste data were taken for the relevant products.

Secondary data used in this study are taken from the latest version of the Ecoinvent database, mainly because primary data from the upstream supply chain were not available (e.g. production of raw materials). However, Ecoinvent has comprehensive data on raw materials and the ones used here were less than 10 years old.

7.4. Data / Background Data Quality Requirements

As a measure of data quality, all primary data collected from Danış Madencilik's plant is for the year of 2023. Primary datasets were produced in SimaPro using these data. Necessary background data (secondary data) relevant to life cycle stages were taken from the Ecoinvent (version 3.9.1) database. The data used within Ecoinvent was less than 10 years old.

7.5. Allocations

Water consumption, energy consumption and raw material transportation were weighted according to 2023 production figures. In addition, hazardous and non-hazardous waste amounts were also allocated from the 2023 total waste generation.

There is no product allocation.

8.LIFE CYCLE IMPACT ASSESSMENT

8.1. Indicators for the Life Cycle Inventory Analysis as Per EN 15804

	Pro	duct st	age		ruction ss stage			L	Jse sta	age			En	d of li	ife sta	ge	Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Modules declared	х	х	х	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Geography	TR	TR	TR	-	-	-	-	-	-	-	-	-	-	-		-	-
Specific data used		>90%	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – products		<1%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites		<1%		-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 5. Description of System Boundary

The results of the LCA study with the indicators according to EPD requirement are given in the following tables for product manufacture. The system boundaries in tabular form for all modules are shown in the table above.

All energy calculations were obtained using Cumulative Energy Demand (LHV) methodology, while freshwater use is calculated with the addition of the water flows within the inventory. As per PCR requirements, net freshwater does not include cooling, turbine, salt (sole) and salt (ocean) water.

Output flows are given in the following tables according to following waste categories: Hazardous waste disposed (HWD), Non-hazardous waste disposed (NHWD), Radioactive waste disposed (RWD), Components for re-use (CRU), Materials for recycling (MFR), Materials for energy recovery (MER), Exported energy per energy carrier (EE).

8.2. LCA Result

Washed Aggregate Stone Powder

Table 6. Results of LCA analysis per declared/functional unit- Washed Aggregate Stone Powder

Core environmental					
impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
GWP-Fossil	kg CO₂ eq	4,57E+00	1,69E-05	8,60E+00	1,32E+01
GWP-Biogenic	kg CO ₂ eq	2,90E-02	5,69E-09	1,17E-01	1,46E-01
GWP-Luluc	kg CO ₂ eq	2,31E-02	8,70E-09	1,02E-01	1,25E-01
GWP-Total	kg CO ₂ eq	4,62E+00	1,69E-05	8,82E+00	1,34E+01
ODP	kg CFC11 eq	5,19E-08	2,53E-13	5,77E-08	1,10E-07
AP	mol H+ eq	3,64E-02	5,98E-08	6,15E-02	9,80E-02
EP – Freshwater	kg P eq	2,59E-03	1,37E-09	9,87E-03	1,25E-02
EP – Marine	kg N eq	1,06E-02	1,96E-08	1,03E-02	2,09E-02
EP – Terrestrial	mol N eq	1,16E-01	2,08E-07	9,27E-02	2,08E-01
РОСР	kg NMVOC eq	3,45E-02	8,04E-08	2,71E-02	6,16E-02
*ADPE	kg SB eq.	2,42E-05	5,39E-11	9,22E-06	3,35E-05
*ADPF	MJ	5,17E+01	2,38E-04	8,99E+01	1,42E+02
*WDP	m ³ depriv.	7,11E+01	1,05E-06	4,82E+00	7,59E+01
Additional environmental impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)	ha 60	4,61E+00	1,69E-05	8,74E+00	1,33E+01
**GWP-GHG	kg CO₂ eq.	4,010+00	1,092-03	0,746+00	1,550+01
Additional environmental impact indicators (Optional)	Unit	A1	A2	A3	A1-A3
PM	disease inc.	6,05E-07	1,34E-12	2,80E-07	8,85E-07

***IR	kBq U-235 eq.	5,12E-02	2,02E-07	7,10E-02	1,22E-01	
*HTP-C	CTuh	3,81E-09	7,64E-15	1,84E-09	5,65E-09	
*HTP-NC	CTUh	4,79E-08	1,71E-13	7,49E-08	1,23E-07	
*SQP	Pt	7,47E+01	1,42E-04	8,85E+00	8,35E+01	
		GWP-total: Climat	e change, GWP-fos	sil: Climate change-	fossil, GWP-	
		biogenic: Climate	change - biogenic, (GWP-luluc: Climate	change - land use	
		and transformation, ODP: Ozone layer depletion, AP: Acidification				
		terrestrial and free	shwater, EP-freshwa	ater: Eutrophicatior	n freshwater, EP-	
Acrony	Inc	marine: Eutrophication marine, EP-terrestrial: Eutrophication terrestrial,				
Acrony	1115	POCP: Photochem	ical oxidation, ADP	E: Abiotic depletion	- elements, ADPF:	
		Abiotic depletion -	fossil resources, W	DP: Water scarcity	, PM: Respiratory	
		inorganics - partic	ulate matter, IR: lor	nising radiation, HTI	P-c: Cancer human	
		health effects, HTI	P-nc: Non-cancer hu	uman health effects	, SQP: Land use	
		related impacts, so	oil quality.			
		A1: Raw Material	Supply, A2: Transpo	rt, A3: Manufactur	ing, A4: Transport,	
Leger	nd	C1: Deconstruction	n/Demolition, C2: V	Vaste transport, C3	: Waste	
		Processing, C4: Dis	sposal, D: Benefits a	ind loads		

Table 7. Resource and energy use per declared/functional product- Washed Aggregate Stone Powder

Core environmental					
impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
PERE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	7,41E+00	3,03E-06	2,98E+01	3,72E+01
PENRE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRM	sMJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	5,17E+01	2,38E-04	8,99E+01	1,42E+02
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	1,65E+00	4,04E-08	3,69E-02	1,69E+00

Abbreviations

PERE = use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = use of net fresh water

Table 8. Waste & Output flows per declared/functional unit- Washed Aggregate Stone Powder

Indicator	Unit	A1	A2	A3	A1-A3		
Hazardous Waste	kg	6,72E-03	5,95E-09	6,44E-03	1,32E-02		
Non-Hazardous Waste	kg	6,73E-01	1,15E-05	5,23E-01	1,20E+00		
Radioactive waste	kg	1,24E-05	4,81E-11	1,67E-05	2,91E-05		
Indicator	Unit	A1	A2	A3	A1-A3		
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Material for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy, electricity	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy, thermal	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
*Disclaimer 1	The results of this environ on these results are high						
*Disclaimer 2	on these results are high or as there is limited experienced with the indicator. GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology The indicator includes all greenhouse gases included in the GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013						
*Disclaimer 3	This impact category dea human health of the nucl accidents, occupational e facilities. This indicator al radon and from some cor	ear fuel cycle. It c xposure, or due t so does not meas	loes not conside o radioactive wa sure potential io	er effects due to p aste disposal in ur nising radiation fr	ossible nuclear iderground om the soil, from		

Aggregate No: 1

Core environmental					
impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
GWP-Fossil	kg CO₂ eq	4,57E+00	1,85E-05	3,91E+00	8,48E+00
GWP-Biogenic	kg CO ₂ eq	2,90E-02	6,25E-09	5,33E-02	8,23E-02
GWP-Luluc	kg CO ₂ eq	2,31E-02	9,54E-09	4,64E-02	6,96E-02
GWP-Total	kg CO ₂ eq	4,62E+00	1,86E-05	4,01E+00	8,63E+00
ODP	kg CFC11 eq	5,19E-08	2,77E-13	2,62E-08	7,81E-08
AP	mol H+ eq	3,64E-02	6,56E-08	2,80E-02	6,44E-02
EP – Freshwater	kg P eq	2,59E-03	1,50E-09	4,49E-03	7,08E-03
EP – Marine	kg N eq	1,06E-02	2,16E-08	4,68E-03	1,52E-02
EP – Terrestrial	mol N eq	1,16E-01	2,28E-07	4,21E-02	1,58E-01
РОСР	kg NMVOC eq	3,45E-02	8,82E-08	1,23E-02	4,68E-02
*ADPE	kg SB eq.	2,42E-05	5,92E-11	4,19E-06	2,84E-05
*ADPF	MJ	5,17E+01	2,61E-04	4,09E+01	9,25E+01
*WDP	m ³ depriv.	7,11E+01	1,15E-06	2,18E+00	7,32E+01
Additional					
environmental impact indicators (Mandatory)	Unit	A1	A2	A3	A1-A3
**GWP-GHG	kg CO₂ eq.	4,61E+00	1,86E-05	3,97E+00	8,58E+00
Additional environmental impact indicators (Optional)	Unit	A1	A2	A3	A1-A3
PM	disease inc.	6,05E-07	1,47E-12	1,27E-07	7,33E-07
***IR	kBq U-235 eq.	5,12E-02	2,22E-07	3,22E-02	8,35E-02

Table 9. Results of LCA analysis per declared/functional unit- Aggregate No: 1

*HTP-C	CTuh	3,81E-09	8,38E-15	8,38E-10	4,64E-09		
*HTP-NC	CTUh	4,79E-08	1,87E-13	3,41E-08	8,19E-08		
*SQP	Pt	7,47E+01	1,55E-04	4,02E+00	7,87E+01		
		GWP-total: Climat	te change, GWP-fos	sil: Climate change-	fossil, GWP-		
		biogenic: Climate	change - biogenic, G	WP-luluc: Climate	change - land use		
		and transformatio	on, ODP: Ozone laye	r depletion, AP: Aci	dification		
			terrestrial and freshwater, EP-freshwater: Eutrophication freshwater, EP-				
		marine: Eutrophication marine, EP-terrestrial: Eutrophication terrestrial,					
Acrony	ms	marine: Eutrophication marine, EP-terrestrial: Eutrophication terrestri POCP: Photochemical oxidation, ADPE: Abiotic depletion - elements, A					
		Abiotic depletion	- fossil resources, W	DP: Water scarcity,	PM: Respiratory		
		inorganics - partic	ulate matter, IR: Ior	ising radiation, HTF	P-c: Cancer human		
		health effects, HT	P-nc: Non-cancer hu	iman health effects	, SQP: Land use		
		related impacts, s	oil quality.				
		A1: Raw Material	Supply, A2: Transpo	rt, A3: Manufacturi	ng, A4: Transport,		
Legen	d	C1: Deconstructio	n/Demolition, C2: V	/aste transport, C3:	Waste		
		Processing, C4: Di	sposal, D: Benefits a	nd loads			

Table 10. Resource and energy use per declared/functional product- Aggregate No: 1

Core environmental impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
PERE	MJ	7,41E+00	3,32E-06	1,35E+01	2,09E+01
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	7,41E+00	3,32E-06	1,35E+01	2,09E+01
PENRE	MJ	5,17E+01	2,61E-04	4,09E+01	9,25E+01
PENRM	sMJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	5,17E+01	2,61E-04	4,09E+01	9,25E+01
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	1,65E+00	4,43E-08	1,65E-02	1,67E+00
Abbreviations	PERE = use of renewabl materials; PERM = Use renewable primary ene	of renewable primary e	energy resources us	ed as raw materia	s; PERT = Total Use of

MELSUMS sustainability Consulting

nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = use of net fresh water

Table 11. Waste & Output flows per declared/functional unit- Aggregate No:	Table 11	. Waste & O	output flows pe	r declared/functional	unit- Aggregate No: 1
--	----------	-------------	-----------------	-----------------------	-----------------------

Indicator	Unit	A1	A2	A3	A1-A3		
Hazardous Waste	kg	6,72E-03	6,53E-09	2,93E-03	9,65E-03		
Non-Hazardous Waste	kg	6,73E-01	1,26E-05	2,38E-01	9,11E-01		
Radioactive waste	kg	1,24E-05	5,28E-11	7,60E-06	2,00E-05		
Indicator	Unit	A1	A2	A3	A1-A3		
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Material for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Materials for energy	kg						
recovery	мд	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy,	kg						
electricity		0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy,	kg						
thermal		0,00E+00	0,00E+00	0,00E+00	0,00E+00		
*Disclaimer 1	The results of this enviror on these results are high						
*Disclaimer 2	_						
	GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology The indicator includes all greenhouse gases included in the GWP-total but						
	excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the						
	product. This indicator is thus equal to the GWP indicator originally defined in EN						
	15804:2012+A1:2013						
*Disclaimer 3	This impact category dea	ls mainly with the	eventual impac	t of low dose ion	ising radiation on		
	human health of the nucl	ear fuel cycle. It c	loes not conside	er effects due to p	oossible nuclear		
	accidents, occupational e	xposure, or due t	o radioactive wa	aste disposal in ur	nderground		
	facilities. This indicator al	so does not meas	ure potential io	nising radiation fi	rom the soil, from		
	radon and from some cor	nstruction materia	als is also not m	easured by this in	dicator.		

Aggregate No: 2

Core environmental					
impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
GWP-Fossil	kg CO₂ eq	4,57E+00	1,52E-05	4,80E+00	9,37E+00
GWP-Biogenic	kg CO ₂ eq	2,90E-02	5,12E-09	6,55E-02	9,45E-02
GWP-Luluc	kg CO ₂ eq	2,31E-02	7,82E-09	5,70E-02	8,01E-02
GWP-Total	kg CO ₂ eq	4,62E+00	1,52E-05	4,92E+00	9,54E+00
ODP	kg CFC11 eq	5,19E-08	2,27E-13	3,22E-08	8,41E-08
AP	mol H+ eq	3,64E-02	5,37E-08	3,43E-02	7,08E-02
EP – Freshwater	kg P eq	2,59E-03	1,23E-09	5,51E-03	8,10E-03
EP – Marine	kg N eq	1,06E-02	1,77E-08	5,75E-03	1,63E-02
EP – Terrestrial	mol N eq	1,16E-01	1,87E-07	5,17E-02	1,68E-01
РОСР	kg NMVOC eq	3,45E-02	7,23E-08	1,51E-02	4,96E-02
*ADPE	kg SB eq.	2,42E-05	4,85E-11	5,15E-06	2,94E-05
*ADPF	MJ	5,17E+01	2,14E-04	5,02E+01	1,02E+02
*WDP	m ³ depriv.	7,11E+01	9,46E-07	2,68E+00	7,37E+01
Additional					
environmental impact indicators (Mandatory)	Unit	A1	A2	A3	A1-A3
**GWP-GHG	kg CO₂ eq.	4,61E+00	1,52E-05	4,88E+00	9,49E+00
Additional environmental impact indicators (Optional)	Unit	A1	A2	A3	A1-A3
PM	disease inc.	6,05E-07	1,21E-12	1,56E-07	7,62E-07
***IR	kBq U-235 eq.	5,12E-02	1,82E-07	3,96E-02	9,08E-02

Table 12. Results of LCA analysis per declared/functional unit- Aggregate No: 2

*HTP-C	CTuh	3,81E-09	6,87E-15	1,03E-09	4,83E-09		
*HTP-NC	CTUh	4,79E-08	1,53E-13	4,18E-08	8,97E-08		
*SQP	Pt	7,47E+01	1,27E-04	4,94E+00	7,96E+01		
		GWP-total: Climate	change, GWP-fossi	il: Climate change-	fossil, GWP-		
		biogenic: Climate ch	nange - biogenic, G	WP-luluc: Climate d	hange - land use		
		and transformation	, ODP: Ozone layer	depletion, AP: Acid	lification		
			terrestrial and freshwater, EP-freshwater: Eutrophication freshwater, EP-				
		marine: Eutrophication marine, EP-terrestrial: Eutrophication terrestrial,					
Acrony	ms	POCP: Photochemic	al oxidation, ADPE	: Abiotic depletion	elements, ADPF:		
		Abiotic depletion - 1	fossil resources, WI	OP: Water scarcity,	PM: Respiratory		
		inorganics - particul	ate matter, IR: Ioni	sing radiation, HTP	-c: Cancer human		
		health effects, HTP-	nc: Non-cancer hu	man health effects,	SQP: Land use		
		related impacts, soi	l quality.				
		A1: Raw Material Su	upply, A2: Transpor	t, A3: Manufacturii	ng, A4: Transport,		
Legen	ıd	C1: Deconstruction,	/Demolition, C2: W	aste transport, C3:	Waste		
		Processing, C4: Disp	oosal, D: Benefits ar	nd loads			

Table 13. Resource and energy use per declared/functional product- Aggregate No: 2

Core environmental					
impact indicators	Unit	A1	A2	A3	A1-A3
(Mandatory)					
PERE	MJ	7,41E+00	2,72E-06	1,66E+01	2,40E+01
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	7,41E+00	2,72E-06	1,66E+01	2,40E+01
PENRE	MJ	5,17E+01	2,14E-04	5,02E+01	1,02E+02
PENRM	sMJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	5,17E+01	2,14E-04	5,02E+01	1,02E+02
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	1,65E+00	3,63E-08	2,02E-02	1,67E+00
Abbreviations	PERE = use of renewabl materials; PERM = Use renewable primary ene	of renewable primary e	energy resources us	ed as raw material	s; PERT = Total Use of

metsims

nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = use of net fresh water

Table 14. Waste & Output flows per declared/functional unit- Aggregate No: 2

Indicator	Unit	A1	A2	A3	A1-A3		
Hazardous Waste	kg	6,72E-03	5,35E-09	3,60E-03	1,03E-02		
Non-Hazardous Waste	kg	6,73E-01	1,04E-05	2,92E-01	9,65E-01		
Radioactive waste	kg	1,24E-05	4,33E-11	9,34E-06	2,17E-05		
Indicator	Unit	A1	A2	A3	A1-A3		
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Material for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy,	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
electricity Exported energy,		0,00E+00	0,00E+00	0,00E+00	0,00E+00		
thermal	kg	0,002100	0,002100	0,002100	0,002100		
*Disclaimer 1	The results of this enviror on these results are high						
*Disclaimer 2	methodology The indicate excludes biogenic carbon	on these results are high or as there is limited experienced with the indicator. GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology The indicator includes all greenhouse gases included in the GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013					
*Disclaimer 3	This impact category deal human health of the nucl accidents, occupational e facilities. This indicator al radon and from some cor	ear fuel cycle. It d xposure, or due to so does not meas	loes not conside o radioactive wa ure potential io	er effects due to p aste disposal in ur nising radiation fr	ossible nuclear nderground rom the soil, from		

9.LIFE CYCLE INTERPRETATION & CONCLUSION

9.1. Overall Summary

This section discusses the outcomes of this life cycle assessment study based on the key findings and hot-spots. Interpreting the impact assessment results are the key to be able to understand the hot-spots (strong emission sources) and to act accordingly to reduce the overall impact.

9.2. Breakdown of LCA Results

Washed Aggregate Stone Powder

When the environmental impact categories of the product are evaluated, the raw material supply stage (A1) and manufacturing stage (A3) seem more dominant than other life cycle stages. The most dominant phase in the POCP, ADPE and water depletion potential categories is the raw material supply stage, while the manufacturing stage is dominant in all other impact categories, especially in GWP indicators. The use of electricity in the manufacturing stage is the reason for the prominent impacts here. It has the highest GWP value compared to other products because the electricity usage is highest for stone powder since it is the smallest version of the stone. The table below lists the share of life cycle stages in each impact category. Impact category of GWP-biogenic and D module is not included in the percentage display because they contain negative values.

Parameter		A1	A2	A3
Global Warming Potential	Fossil	34,7%	0,0%	65,3%
	Biogenic			
	Luluc	18,4%	0,0%	81,6%
	Total	34,4%	0,0%	65,6%
ODP		47,3%	0,0%	52,7%
AP		37,2%	0,0%	62,8%
EP - Freshwater		20,8%	0,0%	79,2%
EP - Marine		50,6%	0,0%	49,4%
EP - Terrestrial		55,5%	0,0%	44,5%
POCP		56,0%	0,0%	44,0%

Table 15. Environmental Impact Distribution by LCA Stages-Washed Aggregate Stone Powder

ADPE	72,4%	0,0%	27,6%
ADPF	36,5%	0,0%	63,5%
WDP	93,6%	0,0%	6,4%

The chart below examines the GWP-fossil comparison between life cycle stages. The graph shows that the manufacturing stage (A3) has the highest GWP-fossil value. The raw material supply stage, following this stage, has the second highest GWP-fossil value. Due to the proximity of the mine to the operation site, the value of the raw material transport (A2) remained minimum.

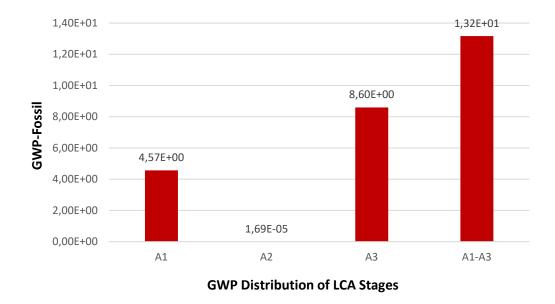


Figure 5. GWP Distribution of LCA Stages-Washed Aggregate Stone Powder

Aggregate No:1

When the environmental impact categories of the product are evaluated, the raw material supply stage (A1) and manufacturing stage (A3) seem more dominant than other life cycle stages. The most dominant phase in the GWP-luluc and EP-freshwater potential categories is the manufacturing stage, while the raw material supply stage is dominant in all other impact categories. The use of electricity in the manufacturing stage is the lowest for Aggregate No:1. Because it is the biggest form of stone among the three products. So, the electricity need is lower than the other two products. The table below lists the share of life cycle stages in each impact category. Impact category of GWP-biogenic and D module is not included in the percentage display because they contain negative values.

Parameter		A1	A2	A3
Global Warming Potential	Fossil	53,9%	0,0%	46,1%
	Biogenic			
	Luluc	33,2%	0,0%	66,8%
	Total	53,6%	0,0%	46,4%
ODP		66,4%	0,0%	33,6%
AP		56,6%	0,0%	43,4%
EP - Freshwater		36,6%	0,0%	63,4%
EP - Marine		69,3%	0,0%	30,7%
EP - Terrestrial		73,3%	0,0%	26,7%
POCP		73,7%	0,0%	26,3%
ADPE		85,2%	0,0%	14,8%
ADPF		55,9%	0,0%	44,1%
WDP		97,0%	0,0%	3,0%

Table 16. Environmental Impact Distribution by LCA Stages-Aggregate No:1

The chart below examines the GWP-fossil comparison between life cycle stages. The graph shows that the raw material supply stage (A1) has the highest GWP-fossil value. The manufacturing stage (A3), following this stage, has the second highest GWP-fossil value. Due to the proximity of the mine to the operation site, the value of the raw material transport (A2) remained minimum.

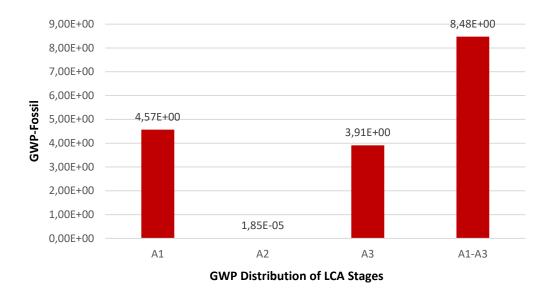


Figure 6. GWP Distribution of LCA Stages-Aggregate No:1

Aggregate No:2

When the environmental impact categories of the product are evaluated, the raw material supply stage (A1) and manufacturing stage (A3) seem more dominant than other life cycle stages. The most dominant phase in the ODP, POCP, EP-marine, EP-terrestrial, ADPE and water depletion potential categories is the raw material supply stage, while the manufacturing stage is dominant in all other impact categories, especially in GWP indicators. The use of electricity in the manufacturing stage is the reason for the prominent impacts here. The table below lists the share of life cycle stages in each impact category. Impact category of GWP-biogenic and D module is not included in the percentage display because they contain negative values.

Parameter		A1	A2	A3
Global Warming Potential	Fossil	48,8%	0,0%	51,2%
	Biogenic			
	Luluc	28,8%	0,0%	71,2%
	Total	48,4%	0,0%	51,6%
ODP		61,7%	0,0%	38,3%
AP		51,5%	0,0%	48,5%
EP - Freshwater		32,0%	0,0%	68,0%

Table 17. Environmental Impact Distribution by LCA Stages-Aggregate No:2

EP - Marine	64,7%	0,0%	35,3%
EP - Terrestrial	69,1%	0,0%	30,9%
POCP	69,6%	0,0%	30,4%
ADPE	82,5%	0,0%	17,5%
ADPF	50,7%	0,0%	49,3%
WDP	96,4%	0,0%	3,6%

The chart below examines the GWP-fossil comparison between life cycle stages. The graph shows that the manufacturing stage (A3) has the highest GWP-fossil value. The raw material supply stage, following this stage, has the second highest GWP-fossil value. Due to the proximity of the mine to the operation site, the value of the raw material transport (A2) remained minimum.

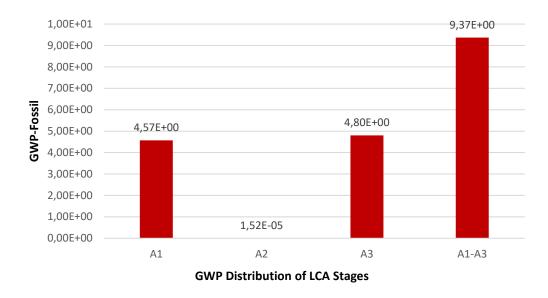


Figure 7. GWP Distribution of LCA Stages-Aggregate No:2

10. ADDITIONAL INFORMATION

10.1. Documentation for Calculating the Reference Service Life (RSL)

RSL is not relevant in this study.

10.2. Disclaimer

This report has been prepared by Metsims Sustainability Consulting with all reasonable skill and diligence within the terms and conditions of the contract between Metsims Sustainability Consulting, and the client. Metsims Sustainability Consulting is not accountable to the client, or any others, with respect to any matters outside the scope agreed upon for this project. Regardless of report confidentiality, Metsims Sustainability Consulting does not accept responsibility of whatsoever nature to any third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk. Interpretations, analyses, or statements of any kind made by a third party and based on this report are beyond the responsibility of Metsims Sustainability Consulting.

11. **REFERENCES**

GPI/ General Programme Instructions of the International EPD[®] System. Version 4.0.

EN ISO 9001/ Quality Management Systems - Requirements

EN ISO 14001/ Environmental Management Systems - Requirements

Ecoinvent / Ecoinvent Centre. www.ecoinvent.org

ISO 14020:2000/ Environmental Labels and Declarations — General principles

EN 15804:2012+A2:2019/ Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations — Principles and procedures

ISO 14040/44/ DIN EN ISO 14040:2006-10. Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

PCR for Construction Products and Construction Services/ Prepared by IVL Swedish Environmental Research Institute, Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol, SCDA, Svenskt Limträ AB, SSAB, The International EPD System, 2019:14 Version 1.2.5 DATE 2024-12-20

The International EPD[®] System/ The International EPD[®] System is a programme for type III environmental declarations. Maintaining a system to verify and register EPD[®]s as well as keeping a library of EPD[®]s and PCRs in accordance with ISO 14025. www.environdec. com

SimaPro/ SimaPro LCA Software. Pré Consultants. the Netherlands. www.pre-sustainability.com

Danış Madencilik/ www.danismaden.com

Ayazağa Mh. Kemerburgaz
 Cd. No:10/5 Sarıyer, İSTANBUL

info@danismaden.com

٩

+902122891010

